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The Gibbs-Bogoliubov variational method has been considered to understand the 
alloying behavior of binary liquid alloys. The method has been used to study the 
entropy(S) of pure liquid metals (Cd, Mg, Zn, Al, In and TI) and excess entropy of mixing, 
ASxs of binary alloys (CdZn, MgZn, CdIn, CdT1, InZn and AIMg). The effect of 
electron-ion interaction on S and ASxs has amply been discussed. The excess entropy of 
mixing have been found sensitive to the electron-ion potential. The computed values of S 
and AS"' are in very good agreement with the experimental observation. 

Key Words: Electron-ion interaction, hard spheres, packing fraction. 

1 INTRODUCTION 

Though enormous experimental data exist on entropy of pure liquid 
metals and alloys', the theoretical works lag behind. In recent years, 
hard sphere model has been widely used to remedy this lack. The most 
important physical quantity occuring here is the hard sphere diameter 
(a) or the packing fraction (q). For pure metals this is usually obtained 
from the observed entropy and is utilized to compute the entropy of 
mixing of liquid alloys (see, for example, Yokoyama et a!.*). 

The Gibbs-Bogoliubov m e t h ~ d ~ . ~  on the other hand, paves the way 
for the ab-initio calculation of the hard sphere diameter which is 
achieved by minimizing the free energy of the system. Many 
workers5-" have utilized Gibbs-Bogoliubov method to study the 
thermodynamic properties of liquid metals and alloys. It seems that 
electron-ion interaction plays an important role. The present work is 
an attempt in this direction to investigate its impact on the evaluation 
of the optimized values of hard-sphere diameters and hence on entropy 
and excess entropy of mixing of liquid alloys. Application is made to s,p 
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152 D. K. PANDEY, R. N .  SINGH, P. L. SRIVASTAVA 

bonded liquid metals like Cd, Mg, Zn, Al, In and TI and equiatomic 
binary alloys such as CdZn, MgZn, CdIn, CdTl, InZn and AIMg. These 
alloys are either homovalent (valency difference between the consti- 
tuent species is zero), or monovalent (valency difference is one) and we 
assume that the pseudopotential perturbation theory can be applied 
without committing appreciable error. The basic steps which connect 
the pseudopotential technique to the hard sphere results are outlined in 
Section 2. The results for the entropy of pure liquid metals are included 
in Section 3. The problem of excess entropy of mixing of binary molten 
alloys has been considered in Section 4, followed by few concluding 
remarks in Section 5. 

2 FORMALISM 

In the frame work of Gibbs-Bogoliubov method2p3 the Helmholtz free 
energy, F ,  per ion at fixed temperature Tand volume SZ can be expressed 
as 

F = F, + F ,  (1) 

The first term amounts to the free energy for the reference system and 
the second denotes the small perturbation term averaged over the 
reference system. For hard sphere model as a reference system it is 
necessary to satisfy the condition, 

r~ is the diameter of hard sphere. In what follows we shall discuss the 
evaluation of F ,  and F , .  

2.7 

Let the liquid alloy consist of C , N  hard spheres of diameter r~~ of 
species ' 1' and C,N hard spheres of diameter o2 of species 2 then under 
Percus-Yevick approximation one readily obtains 

Excess Entropy of Mixing of Liquid Alloys 

(3) F , - - ~- :K,T- TSh,  

S,, is the entropy of the hard sphere mixture which consists of 

s,, = si, + Sgas + s, + s, (4) 

where Sid is the ideal entropy of mixing, S,,, is the ideal gas entropy, S ,  
is the contribution which depends solely on packing density and S ,  
represents the entropy contribution due to mismatch of the hard sphere 
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EXCESS ENTROPY OF ALLOYS 153 

diameters o1 and 02 .  The working expressions for these quantities may 
be summarized as’ 

2 

Sid = - K B  1 Ciln ci 
i =  1 

S,=K,lncr+ 1.5KE(1 - a 2 )  (7) 

S ,  = K B n C , C 2 ( o ,  - a2)2a2  71 

with c1 = (1 - q)- ’ .  The first two terms are structure independent terms 
and depend only on concentration C, atomic mass rn and atomic 
volume Q. The last two terms are obviously structure-dependent 
contributions due to presence of the packing fraction, q[ = n/6R 
(C,a: + C20: ) ]  and the hard sphere diameter, oi. 

The entropy expressions for pure elements ‘ i ’  can be obtained using 
the above relations by setting either C, = 0 or C, = 0, in which case Si, 
and S ,  terms are identically zero leaving behind 

with 

qi = xu?/oRi is the packing fraction of the pure element i. It may be 
mentioned that the well known Carnahan-Starling” formula for the 
entropy of pure element can be obtained from Eq. (11) by expanding 
ln(1 - q i )  and retaining only the terms up to q2. 

The excess entropy per atom in the alloy is defined as 

A P  = S,, - 1 Cis:, - c Ci In Ci 
i i 

= KB ln(Q/Ry1Q;2) + S ,  - c Cis:> + S ,  (12) 
i 

The first term on right hand side depends only on the atomic volume 
and is called gas term (ASgas). The second bracketed term depends on 
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I54 -D. K. PANDEY, R. N. SINGH, P. L. SRIVASTAVA 

the packing fraction q and is usually denoted as AS,,. The last term is, as 
usual, the mismatch term S,. Thus ASxs is conveniently expressed as 

(13) ASxs = AS,,, + AS,, + S, 

2.2 Pseudopotential Method for the Entropy 

The pseudopotential method enters into the calculation of the Helm- 
holtz free energy through the term F ,  and hence into the entropy 
calculation via Eq. (2) .  For a system of ions and electrons, F ,  is 
expressed as, 

F ,  = F,, + F, + F,  + F ,  (14) 

where F,, arises due to free electron gas, F ,  and F ,  are due to 
electron-ion interaction defined via first and second order pseudopo- 
tential perturbation theory respectively, and F ,  takes into account for 
the ion-ion interaction. The interaction between conduction electrons 
has been buried in F,. The expressions for these contributions for a 
metal have been worked out in detail by Harrison12 which can easily be 
extended to binary alloy, 

3 F = - K 2  , - ~ K F  - 0.0474 - 0.0155 In KF - 0.5 
eg ” 10 4.n i 

where, K ,  = ( 3 7 ~ ~ 2 n ) ” ~ ,  fn = z l n l  + z2n2 and .? = Clzl + C2z2; z1 and 
z2  are valencies, n, and n2 are number densities of the ion species and 
n = n, + n,. V(q)  is the Fourier transform of the bare ion pseudopoten- 
tial, E * ( q )  is the modified Hartree dielectric screening function which 
takes into account of the conduction electrons interaction 

(19) 

E ( q )  is the Hartree dielectric function and G(q) is the correction factor 
for the exchange and correlated motion of the conduction electrons. 

= 1 + (&I) - 1 ) ( 1  - G(q)l 
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EXCESS ENTROPY OF ALLOYS 155 

Presently we consider G(q)  prescribed by Hubbard' and Shami4. 

G(q)  = ) q 2 / ( q 2  + [2~Kf./(O.153 + xK~)]} (20) 
The partial structure factors, Sij  appearing in Eqs (1 7) and (1 8) have 
been computed following the work of Ashcroft and Langreth'*. This 
includes the detailed arrangement of ions in the system and requires the 
knowledge of the hard sphere diameter a which have been determined 
in the variational thermodynamic sense ensuring minimum free energy 
for the system via Eq (2). 

We now return to the electron-ion interaction measured through the 
bare ion pseudopotential matrix elements V(q) .  In model potential 
theory, V ( q )  explicitly depends on the form of the potential considered. 
The potential seen by conduction electron in the presence of ions is 
usually written16 as consists of (i) the ion-core potential (for the region 
r < rm, rm is a chosen model radius) and (ii) and potential outside the 
core region rm which is coulombic ( = - z / r )  in nature. In past, a great 
effort has been made to model the ion-core potential. Presently we 
consider three different forms of ion-core potentials which have been 
tested successfully for the electronic transport properties of liquid 
metals and alloys. In order to avoid numerical complexities, we 
consider !-independent form of the ion-core potential (for the region 
r < rm) ,  

V ( r )  = 0 Ashcroft Pot. '' 
= - A  Heine-Abarenkov Pot." 
= - (a  - br2) Harmonic Model Pot.lg 

in atomic units ( e  = h = rn = 1). A ,  a and b are model parameters which 
are obtained quantum me~hanical ly '~-~ '  by matching the wave func- 
tions at the chosen model radius r = rm.  The Fourier transform of V ( r )  
gives V(q)  to be used in Eqs (16) and (17) and this enables us to study 
the effect of the ion-core potential on entropy of liquid metals and 
alloys. 

3 APPLICATION TO PURE LIQUID METALS 

3.1 Optimized Hard Sphere Parameters 

The main thrust here is to compute hard sphere parameter (a or q) from 
the first principle for divalent (Cd, Mg and Zn) and trivalent (Al, In and 
T1) liquid metals. This has been achieved by minimizing the Helmholtz 
free energy of the system with respect to a, for different ion-core 

P C L  c 
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156 D. K. PANDEY, R. N.  SINGH, P. L. SRIVASTAVA 

potentials. The only model parameter r ,  needed in the Ashcroft 
potential” has been taken from Cohen and HeineI6 where it has been 
fixed to reproduce the observed electrical resistivity. The well depth A 
for I = 0 required in the Heine-Abarenkov (HA) potential has been 
taken from the work by Ese and Reissland”. The model parameters a 
and b occuring in the harmonic model potential (HMP) have been 
opted from the work by Sahay and Srivastava*’. It may be mentioned 
that the parameters occuring in HA and HMP potentials have not been 
fixed with reference to any observed properties rather have been 
evaluated independently by matching the wave functions. The densities 
appropriate to pure liquid metals at relevant temperatures have been 
calculated from Smithels metal book2*. 

The computed values of the hard sphere diameter F and the packing 
fraction q are tabulated in Table 1. The different forms of the ion-core 
potentials affect c only slightly with a minimum of about 2 % in T1 to a 
maximum of about 6 %  in Al. Though for pure liquid metals this is a 
very small number but we shall see later that it becomes very important 
in the calculation of the excess entropy of mixing when we make alloy 
out of these metals. 

Table 1 Optimized values of hard sphere parameters of pure liquid metals. 

Metals Temp. Atomic Model Hard sphere parameters 
(K) volume potential 

(a) Diameter (u) Packing fraction ( v )  

Cd 800 168.97 HMP 
HA 
ASCH 

Mg 923 179.60 HMP 
HA 
ASCH 

Zn 800 119.19 HMP 
HA 
ASCH 

Al loo0 128.00 HMP 
HA 
ASCH 

In 700 193.61 HMP 
HA 
ASCH 

TI 750 215.98 HMP 
HA 
ASCH 

5.3292 
5.2179 
5.1678 
5.3 192 
5.4916 
5.4348 
4.7358 
4.7702 
4.9542 
5.1463 
5.0870 
4.8392 
5.7367 
5.5870 
5.5374 
5.4854 
5.4754 
5.3864 

0.4690 
0.4402 
0.4276 
0.4388 
0.4828 
0.4680 
0.4666 
0.4768 
0.5342 
0.5575 
0.5385 
0.4636 
0.5106 
0.4717 
0.4592 
0.4007 
0.3986 
0.3794 
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EXCESS ENTROPY OF ALLOYS 

3.2 Entropy of Pure Liquid Metals 

157 

The entropy of pure liquid metals have been computed through Eq. (9). 
The atomic volume SZ and the packing fraction, q, required in the 
calculation are taken from Table 1. The values of entropy computed 
with different forms of electron-ion potentials are tabulated in Table 2. 
SBas depends only upon the density and are thus independent of the 
potential. The potential affects the entropy through S q .  The magnitude 
of SBas is larger than Sq.  The former increases the absolute value of the 
entropy whereas the latter tends to decrease the total entropy of the 
system. 

The computed values of entropy of pure liquid metals are in good 
agreement with the experimental values'. For A1 and In close agree- 
ment has been obtained with Ashcroft potential whereas for Cd, T1, Zn 
and Mg, the HMP results are in better agreement with the experimental 
observation. The effect of electron-ion interaction is more visible in A1 
than other liquid metals considered here. 

Table 2 Entropy of pure liquid metals. 

.~ 
Metals Temp. Model s,,, so SIK, 

_. (K) potential __ 
K ,  K B  (Theory) (Expt.) 

Cd 800 HMP 
HA 
ASCH 

Mg 923 HMP 
HA 
ASCH 

Zn 800 HMP 
HA 
ASCH 

A1 loo0 HMP 
HA 
ASCH 

In 700 HMP 
HA 
ASCH 

T1 750 HMP 
HA 
ASCH 

14.2509 -4.3129 
14.2509 - 3.7641 
14.2509 -3.5469 
12.2294 - 3.7382 
12.2294 -4.6057 
12.2294 -4.2920 
13.0891 -4.2641 

13.089 1 - 5.902 1 
12.1675 -6.6231 
12.1675 -6.0284 
12.1675 -4.2033 
14.2186 -5.2623 
14.2186 -4.3682 
14.2186 -4.1180 
15.2949 -3.1221 
15.2949 - 3.0899 
15.2949 -2.8194 

13.0981 -4.4765 

9.9380 10.2 
10.4868 
10.7040 
8.491 2 8.88 
7.6237 
7.9374 
8.8250 9.06 
8.6126 

7.1870 
5.5440 
6.1391 
7.9642 8.85 

8.9563 
9.8504 

10.1006 10.82 
12.1728 11.47 
12.2050 
12.4755 
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EXCESS ENTROPY OF MIXING OF BINARY LIQUID ALLOYS 

4.1 

The values of hard sphere diameters for CdZn, MgZn, CdIn, CdTl, 
InZn and AlMg equiatomic molten alloys have been obtained by 
undergoing repeated optimization of the Helmholtz free energy 
through Eqs (1) and (2). The computed values for different forms of 
electron-ion interaction are listed in Table 3. The densities appropriate 
to equiatomic composition have been obtained by considering the 
values of excess volume of mixing23324. The percentage excess volumes 
[AR/R, = (Ralloy - Qo)/Qo; a, = C,Ry + C,R;; are the 
specific volumes for the pure liquids] are also collected in Table 3. We 
have observed that AR/R, % occurs as very important input data. Even 
a small change in this value affects the excess entropy of mixing 
considerably. 

An inspection of Tables 1 and 3 reveals that the sizes of the hard 
sphere of the constituent element change on alloying. In each case the 
constituent components have tendencies to equalise (oA,hB N 1.0) the 
size of the hard spheres in the mixture. In general, hard spheres 
representing the heavier elements contracts and that of lighter elements 

u and q for Binary Liquid Alloys 

and 

Table 3 Optimized hard sphere parameters for equiatomic liquid alloys. 

Alloy Temp. AQ Model Diameters Pack. Change in 
A,B (K) % potential 

~~ frac. packing 
( U A )  ( V B )  ( V A B )  fraction on 

alloying (Aq) 

Cd,Zn 800 0.53 HMP 
HA 
ASCH 

Mg,Zn 923 -8.81 HMP 
HA 
ASCH 

CdJn 623 2.94 HMP 
HA 
ASCH 

Cd,TI 750 0.93 HMP 
HA 
ASCH 

In,Zn 700 0.516 HMP 
HA 
ASCH 

HA 
ASCH 

AI,Mg 1000 -2.77 HMP 

5.271 
5.127 
5.057 
5.154 
5.348 
5.227 
5.284 
5.189 
5.155 
5.623 
5.357 
5.255 
5.649 
5.489 
5.461 
5.408 
5.212 
4.976 

4.822 
4.896 
5.131 
4.737 
4.731 
5.01 7 
5.604 
5.494 
5.493 
5.393 
5.413 
5.374 
4.888 
4.955 
5.178 
4.997 
5.267 
5.193 

0.4673 
0.4557 
0.4779 
0.4598 
0.4894 
0.5087 
0.5420 
0.5121 
0.5072 
0.4528 
0.4228 
0.4064 
0.4982 
0.48 14 
0.5059 
0.5058 
0.5143 
0.4707 

- 0.00027 
-0.00598 
- 0.01220 

0.01 547 
0.02 124 
0.01328 
0.00071 

- 0.00439 
- 0.00026 
+ 0.00686 
- 0.00604 
-0.00682 
+ 0.00468 
-0.00387 
-0.01214 
-0.00105 
-0.00019 

0.00456 
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EXCESS ENTROPY OF ALLOYS 159 

expand on alloying. This can qualitatively be understood by consider- 
ing the redistribution of the electronic charges at the Fermi surface on 
alloying. The Fermi wave vector of Cd (KC,d = 0.705) is smaller than 
Zn(Kp = 0.792 a.u.). When Cd and Zn are mixed together then the 
flow of electrons takes place from Cd to Zn as the latter has lower 
Fermi energy. This leads to the expansion of Zn atoms and the 
contraction of Cd atoms. Similar is the case with other alloys. The 
contraction and expansion of the h hard spheres in the alloy have also 
been discussed by Singh and Choudhary2’ on the basis of electronegati- 
vity factor. 

We have also computed Aq( = qallOy - (q”,: + qgQi)/(Qi + Qg) 
where qp and are packing fraction and atomic volumes of pure 
metals. The values of Aq which is a measure of increase in the packing 
fraction on alloying are listed in Table 3. It appears that the values of Aq 
depends on the electron-ion interaction. Aq for CdZn is negative and it 
is positive in MgZn with all the three forms of potentials considered 
here. We observe that Aq gets influenced both by excess volume of 
mixing and electron-ion interaction. The effect of the core region 
potential on the values of q is limited to 5 % in InZn to a maximum of 
11 % in CdTI. We shall see, in the following section, that even a small 
variation in the value of q like this plays a dominant role in computing 
the excess entropy of mixing for the alloy. 

4.2 

Having determined the optimum values of the packing fraction ( q )  for 
pure metals and alloys, it is now straight-forward (see Eqs (12), (13) to 
compute the various contributions to the excess entropy of mixing. The 
various contributions ASgas, ASq and Sa are tabulated in Table 4. We 
observe that I ASqJ > lASgasl > So. The contribution So, which arises 
due to difference in the sizes of the effective hard spheres of the 
constituent elements is found to be small and gives a correction to third 
or fourth decimal place. In Section 3.2 it was observed that the entropy 
of pure liquid metals is dominated mainly by gas term (Sgas) but in case 
of alloy the packing fraction term (ASq) plays a dominant role. 

The core-region pseudopotential affects the excess entropy of mixing 
through ASq and So. As Sa is very small the major contribution comes 
from the former. The effect of the potential is distinctively visible on the 
values of AS?. Though the packing fraction q is only affected to a 
maximum of 11 % by the potential, ASq even changes its sign as in 
AlMg, CdTl and InZn. 

The computed values of the excess entropy of mixing have been 
compared in Table 4 with the experimental values’ and the theoretical 

Excess Entropy of Mixing of Liquid Alloys 
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values of Yokoyama et al.2. Though ASxs is a very small number but the 
agreement between the theory and the experiment is quite satisfactory. 
From the point of view of the entropy of mixing (AS,/K, = ASXS/K, + xi Ci In Ci) the agreement is almost exact. The different form of the 
potential in the core region of the atom affects ASxs considerably but the 
same potential could not provide consistently good result for all 
systems considered here. The Ashcroft potential exhibits good result of 
ASx5 for AIMg, CdTl and InZn. However for CdIn and CdZn, HMP 
seems suitable. 

It is worth mentioning that the excess entropy of mixing (ASxs) 
computed with HMP and HA potentials differ considerably though the 
nature of the two potentials in the core region is not very much 
different. Even the sign of ASxs in CdTl and AlMg is opposite. This may 
be due to the small error involved in the evaluation of model potential 
parameters. The latter have been evaluated at the Fermi level corre- 
sponding to the pure elements. In true sense, however, these parameters 
should be evaluated at E ,  corresponding to alloy. The extrapolation of 
parameters at E ,  from the term values is also not unique. Since the 
magnitude of ASxs is so small that even a minor error affects ASq 
significantly and in turn AS". 

It should be noted that the excess entropy of mixing for MgZn 
equiatomic alloy is a large negative quantity which is not usually found 
in simple binary alloys. As both AS,,, and ASq are negative for this 
system, they add together to give a large negative value for A P .  We 
could not compare our result to the experimental values as no such 
measurements exists. Nonetheless the interest in the MgZn liquid alloy 
system is increasing because it readily forms a metallic glass on 
quenching. 

Yokoyama et al.' have made an extensive study of the ASxs based on 
Gibbs-Bogoliubov method. They have also noticed the importance of 
electron-ion interaction for the evaluation of ASxs. In order to compute 
ASxs they first fitted the core radius of the Ashcroft potential to the 
observed entropy of pure liquid metals, which in turn were used to 
compute the excess entropy of mixing of the alloy. Unlike their work we 
avoid the fitting of potentials to the entropy rather HA and HMP 
parameters have been determined quantum mechanically by matching 
the wave functions. It may be mentioned that these forms of the 
potentials also provide reasonable picture for the transport properties 
of liquid metals and  alloy^'^-^^. Thus it seems possible to obtain a 
consistent picture of electrical and thermodynamic properties of liquid 
metals and alloys with the same pseudopotential matrix elements. It is 
likely that the results of ASx5 may further be improved if one considers 
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the I-dependence of the potential parameters and be made energy 
dependent. 

5 CONCLUSION 

The Gibbs-Bogoliubov variational technique which establishes a link 
between the hard sphere results and the pseudopotential method is a 
useful tool to understand the alloying behaviour of binary liquid alloys. 
The ion-core potential affects the excess entropy of mixing significantly. 
There is evidence for a large negative excess entropy of mixing for the 
MgZn equiatomic liquid alloy system. 
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